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1 NACA RM L51D23 
P 

NATIONAL ADVISORY co"ITI!EE FOR AERONAUTICS 

THEOREZIICAI, INvEsTIGAnON OF AN AUTOMATIC COmTROL SYSTEM 

W I T H  PRIMARY S E N S I T m Y  TO NORMAL ACCELERATIONS 

AS USED To CONTROL A SUPERSONIC  CANARD 

KCSSILF CONFIGURATIOR 

By Ernest C. Seaberg and Earl F. Smith 

Results are presented of  a theoretical   investigation of an auto- 
* matic control system w i t h  p r f m a r y  sens i t iv i ty  to normal accelerations 

as used to   control  a specific  supersonic canard missile. The acceler- 
ation  control system consists of  an integrating servomotor which 
receives i ts  actuating  signal from an accelerometer sens i t ive   to   the  
normal accelerations  of  the airframe being controlled. The servomotor 
operates the  airframe  control surfaces to   ob ta in  o r  maintain desired 
normal accelerations. 

I 

The analysis is based largely on comparisons of normal acceleration 
transient responses  obtained for  various  conditions of Mach number, 
a l t i tude ,   s ta t ic  margin, and rate-of-pitch  feedback. The resu l t s  indi- 
cate tha t  the use of rate-of-pitch feedback and. a high s t a t i c  margin 
with accompanying increase in  integrating-servomotor  gain and rapid 
control-surface  deflection  results in a more rapid  transient response 
and a lower steady-state attitude error  due t o  aerodynamic out-of-trim 
mutent. 

The acceleration  control system appears t o  be a satisfactory method 
for  obtaining  longitudinal  control of the supersonic airframe under con- 
sideration. This system has no directional space  reference of  i ts  own, 
however, and i ts  primary usefulness i s  therefore  believed  to be i n  con- 
junction w i t h  a homing seeker o r  w i t h  a guidance  system  which w i l l  pro- 
vide a directional space  reference. 
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INTRODUCTION 

As part  of the  general  research program for  investigating  various 
mems of automatic stabil ization,  the  Pilotless  Aircrsft  Research 
Division of the Langley Aeronautical  Laboratory  has been conducting a 
theopetical  analysis  to determine the  possibi l i t ies  of using an auto- 
pilot  primarily  sensitive  to  linear.  sccelerations  for  lowitudinal 
s tabi l izat ion and control of a supersonic  canard-airframe.  Physically 
this   type of control combines the use of a l hea r  accelerometer and 
servomotor to   obtain-desired normal axelerati& of the 'missile. Since 
the  acceleratton  cDptrol system has no dLiecti6rial space reference of' 
i t s  am, i ts  primary  usef'ulness i s  believed t o  be In conjunction with a 
homing seeker. An autopilot of the  type  investigated i n  this analysis 
is small, lightwei@;ht, and simple to   fabr ica te  a8 compared t o  a 
displacement-plus-rate  type o f  autopilot.  Longitudinal  control through 
the  use of an accelerometer also has  the.  advantage of eliminating  the 
problem of free gyroscope drift. . .  

. . . . . . . . 

The analysis  has been made for a specific  supersonic  canard missile 
configuration and i s  based mainly on flight  conditions and s t a b i l i t y  
characterist ics  anticipated as a resu l t  of previous f l i gh t   t e s t a  of 
geometrically  similar models. The results  presented show the   effects  
of the  following  conditions on the  over-all performance 6f the autopilot- 
model combination: 

. .  

(1) Stat ic  margin and Mach  number variation 

(2) The addition of  a. rate-of-pitch feedback .. .. control 

(3)  Altitude variat ion 

(k)  Aerodynamic. out -of - t rh  moment 

( 5 )  Variation of servo-gain cons tan ts  

( 6 )  Mach  number variation with f ixed.sem-gain  constants  

"r 

.. . - 

. . .- 

t 

(7) The use of an accelerometer dieplaced ahead of model center of 
gravity t o  generate  both  normal-acceleration error and rate- 
d - p i t c h  feedback signal. 
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no 
*i 

%I 

vni 

6 

8 

5s 

8R 
60t 

KR 

normal acceleration of airframe i n  g units  

desired normal acceleration of airframe i n  g units 

Mltage  proportional  to k, volts 

voltage  proportional t o  ai, volts 

voltage  error,  volts (e = Vni - v%) , o r  nom-acce le ra t ion  
error, g un i t s  (E = ni - %) 

acceleration due t o  g r a ~ t y ,  32.2 feet per eecond per second 

pitch angle measured from the  horizontal, degrees 

f i rs t  derivative of pitch angle w i t h  respect t o  time, 
degrees per second (deo/dt) 

angle of attack,  degrees 

f i rs t  derivative of angle of attack with respect   to  time, 
degrees per second  (&/at) 

flight-path  angle,  degrees (7 = 6 - a) 
f i r a t  derivative of 7 with respect   to  time, degrees  per 

second (dy/dt)  

canard  control-eurface  deflection,  degrees (8 = E s  - 8 ', 
R J  

control-surface  deflection due to   in tegra t ing  servo, degrees 

control-surface  deflectfon due t o   r a t e  servo,  degrees 
/ 

value of control-surface  deflection which counterbalances 
out-of-trim moment, degrees 

integrating  servo  gain  constant,  radlans per second per  g 

rate-servo  gain  constant, radians per  radian  per second 
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KA 

t 

M 

Y 

IY - 
C 

c.  p. 

SM 

v 
m 

9 

S 

CL 

c, 

steady-state proporbionality  constant between voltage and 

acceleration, volts per g- 
e 

time, seconds 

Mwh number 

stability a x i s  which passes through center of gravity and 
i s  perpendicular t o  vertical plane of symmetry 

moment of inertia about Y - a x i s ,  slug-f eet square 

mean aeroaynsmic  chord, feet 

model center of pressure 

s t a t i c  margin, fraction of E 

velocity,   feet  per second 

m888, SlUgS 

dynamic pressure, pounds per square  foot; or  - (when 
used as a subscript) 2v 

w i n g  m a ,  square  feet 

;E 

lift coefficient W )  

. 
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0 angular  frequency, radians per second 

13 differential  operator  (d/dt) 

S 

KG 

Laplace  transform variable corresponding t o   d i f f e r e n t i a l  
operator 

system or  component transfer  function; may be expressed &B 
a Function of dm, D, or s 

AR magnitude of KG( jw )  

PA phase angle of KG (fcu) 

R - Routh's  discriminant 

b A,B,C,D,E,F coefficients of the  quintic  characteristic  equation 

of %(SI 
ni 

DESCRIPTION OF THE PROPOSED ACCEIEEIATIODT CONTROL SYSTEM 

The block diagram of the  proposed acceleration con-t;rol system with 
the airframe compensated by rate-of-pitch feedback i s  sham  in   f igure 1. 
The voltage input Vni of the system is made proportional t o  a desired 
normal acceleration  ni of the airframe. The accelercnneter  produces a 
voltage VQ proportional to   the   ex is t ing  normal acceleration n, of 
the airframe. The proportionality  constant KA between desired  acceler- 
ation ni and input  voltage Vni i s  the same 88 the  proportionality 
constant between existing  acceleration and acceleration volt- 
age V%. Then if  existing  acceleration ie not equal to  desired  acceler- 
ation an error  signal E excites  the  integrating servo. The integrating 
servo produces  a control-surface  deflection €jg which i s  proportional 
to   the   in tegra l  of the error  signal. This control  surface  deflection 
causes the airframe t o  turn  in   the proper direct ion  to  produce  a normal- 
acceleration  signal which tends t o  cancel  the error signal. In the 

error, and hence the  control-surface  deflection, is not necessarily zero. 
I steady-state  condition  the  error  signal i s  zero,  but the  integral  of the 
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The effect  of the   ra te  s e m  can be thought of as a modification of 
the  airframe response since i t s  primary effect is t o  increase t h e  .. 
damping r a t io  of the  airframe. " 

Pmposed  configurations for  the  various  elements,  other  than  the 
airframe,  are  presented  in t h e  following  paragraphs. 

Rate seTv0.- The proposed rate servo  consists of a r a t e  gyro and 
hydraulic  servo combined as sham  schematically  in figure 2(a) .  Fig- 
ure 2 i l l u s t r a t e s  one possible mechanical  arrangement, many vasiations of 
which are possible. If time lags and the  effect  of iner t ias  %re Ignore&, 
the  control  &flection 6~ is .proportional to a rate input 8. For the 
present  analysis, the  rate servo was considered t o  be a single-degree- 
of-freedom, second-order  system having a natural frequency of' 88 r a d i a n s  
per second and a deonping r a t i o  -of 0.5. This i s  believed t o  be a con- 
servative  representation of the dynamic effects  of an actual r a t e  gyro 
plus servomotor. 

Intenratinn  servo.- A proposed integrating  servo is shown schemati- 
ca l ly  in figure 2(b). Since there are moving masses i n   t h i s  servo  the 
response cannot be instantaneous as implied by the   t ransfer  f'unc- 
tion, 2 = %. H a r e v e r ,  the assm1Vt;ion made herein i s  that the fluid- 
supply pressure is high with no limit on the   ra te  of flow, and the 
masses of the moving parts (including moving f luid)  are small. Since 
such a servo is fast  acting,  the  dpamic.effect8 can be ignored fo r  
operation at low frequencies. 

Accelerometer &yn&cs.- The tern "sccelero~neter dyn8mics" as used 
here  includes w y  dynamic effect  between the normal acceleration n, 
of the  airframe and the electrical  accelerometer signal Vno. Moet 
accelerometers  having a range suit&ble  for  the  present  application have 
a natural  frequency which is sufficiently  high so that the dynamic 
effects  of the  accelerometer may be neglected; however, because of noiee 
signals  picked up by the  accelerometer,  the  accelerometer  signal may 
have t o  be filtered electr ical ly .  The dynamic effects-  of  such a f i l t e r  
are  included i n   t h e  accelerometer  dynmics  discussed  here. 

For the major part o f  the  present  investigation,  the  effect of 
accelerometer dynamics was neglected; however, i t s  effect  wae investi- 
gated f o r  one se t  of conditions, and the  results  obtained  are shown 
later. For th ie   se t  of condXtions, the  following  transfer  function was 
used t o  represent-the  accelerometer dynamics. 

L 

. 
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This transfer  function  represents a second-order system h a e n g  8 natural  

per second the amplitude r a t io  is  0.N and the  phase 1% is 23O, and 
at 80 cycles  per second the amplitude r a t i o  i s  0.1. This transfer  f’unc- 
t i on  was used  because it 3 s  believed  that  these phase and attenuation 
characterist ics are representative of those t o  be expected from an actual 
accelerometer and f i l t e r  suitable for the present  application. 

- frequency of 25 cycles  per second and damping r a t io  of 1.0. A t  5 cycles 

ME;TBOD OF ANALYSIS 

The analysis is mainly  concerned with obtaining  the  transient  accel- 
eration response (+> to a unit-step  acceleration  input  (ni}.   ~hese 
responses are  then used t o  determine the  effect of variation of  the 
&utomatic-control system gain  constsnts and the airframe aerodynamic 
parameters. To f a c i l f t a t e  analysis, the airframe and autopilot com- 
ponents  can be represented by transfer  functions which can be combined 
in block diagram form. 

t Component Transfer  Functions 

- Servomotor block. - This block  represents an integrating s e m .  If 
the dynamics of the servomotor and control  surface are neglected, t h i s  
block can be drawn as: 

Airfrme block.- The forms of the  equations of motion for constant 
speed and disturbances f r o m  level flight are: 

where the stabil i ty derivatives are expressed i n  radian measure. 
m 

e 
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Solution of these equations f o r  - '0 gfves the airframe transfer  8 
function, which can be represented in block diagram form as: 

where 

1 I I 

The %/eo block.- The transfer  function %/eo is  obtained from 
the relation 

and the function is obtained by substituting a + 7 for 0, b the 
equations of motion. The solution fo r  ;5 ; is then 

S 



. 
For the  case where C b  = 0, the  transfer  function %/Go in g 

L units  per radian can be represented i n  block-diagram form as: 

where " - - .  . .  

and a and b &re previously  defined. 

Rate-control block.- The rate control can be represented i n  block- 
dfagram form as: 

This  transfer  function  has been used previously i n  conjunction 
with a displacement  actopilot in  reference 1. The s t a t i c   s ens i t i v i ty  
(Kx) has the  physical significance of being the magnftude of steady- 
state control-surface  displacement SR, result ing from & unit rate 
input 8. 

Accelerometer  block.- For the  major pa r t  of this analysis,  the 
dynamics of the  accelerometer in   the  outs ide loop have  been neglected. 
That is, the transfer  function - is assumed t o  be equal t o  unity. 
In  determining the  effect  of including  the  accelerometer dynamfcs, it 
was assumed tha t  the accelemneter and f i l t e r  could be represented by 
the  following  block: 

vno 
no 

w The gain K' was taken as unity  since  variations of KA have the same 
effect on the responses t o  831 ni input as do variations of e e m  gain 

.I Kl, as can be derived  by  using  the  block diagram sham in figure 1. - 
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Method of Obtaining  Transient Response8 

The system analyses  presented  herein are based mainly on the  tran- 
sfent  responses of the system t o  a uni t  step input. Although such dis- 
continuities in the  input may never occur Ln practice, the responses to 
a unit   step input are of value in making a comparison of a system’s 
performance  under various  conditions. 

The majority of the transient responses  presented  herein are square- 
wave responses  obtained from plots of the closed-loop  frequency  response 
no( jco) by the  use of  the following series:  
ni 

where %(t) is  the responee to a square-wave input,. If the Amda- 
mental  frequency UQ of the square  wave is made low enough 80 that “the 
system transients die out i n  one-half -period of the squai-e  wave, the 
square-wave reponse i s  essentially  the response t o  a series of steps. 
Twelve terms of the above ser ies  were used and summed by a Fourier 
synthesizer. This instrument was developed by the Massachusetts 
Ins t i tu te  of Technology, and the iu&h&ical ana technical aspects of a 
similar instrument along with a description of the equipent  and. a 
derivation of the preceding series can be found in  reference 2. 

A graphical.method employing the  general  theories of servomechanism 
analysis, as outlined in  reference 3, was used- to   obtain  the closed-loop 
frequency  response pr ior  t o  obtaining each transient. With the assump- . 
t ion made previously (2 - = 1) , the block diagram f o r  the combination of 
automatic  control system and model reduces to :  

. 
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This analysis i s  mainly  concerned  with the transfer  function 8, 
obtained. As mentioned previously, a graphical method as described i n  
reference 3 (chapter 8) i s  employed in  obtaining 8. Since the  block 
diagram contains two feedback loops, t he  solution must be handled i n  
two steps. The first step  consiste of obtaining an Ia-Angle plot of 
the  open-loop response T, 6R on which the M-N contours are super- 
imposed. Then a satisfactory (but  not  necessarily optimum) adjustment 
of the rate servo gain  constant KR can be made and the closed-loop 
response 3 obtained. The second step combines the  inner loop with 

the remaining components of the  block diagram t o  obtain  the Lm-Angle 
plot of the open-loop response %, on which the  M-N contours &re also 
superimposed. The integrating Berm gain  constant KI is adJusted on 
this   plot .  The significance of this adjustment is t ha t  it fixes the 
peak amplitude r a t i o  of the closed-loop $( jcu),. In  most cases,  the 
value of Kl WBB chosen, a s  suggested i n  references 3 and 4, so that 

.. from which the  transient response %(t> t o  a Wt step   n i  can be 

6s 

. 

The resu l t s  which fo l low show the  effect  of varying the  airframe 
s t a t i c  margin, flight  conditions, and autopilot  gain  constants on the 
over-all performance of  the  combination of %he automatic-control system 
and model using a specific  supersonic  airframe. A photograph and plan- 
v i e w  sketch of the airframe are shown in figure 3. Flight tests of 
geometrically sirdlar airframes have previously been  conducted, the 
resul ts  of  which are presented i n  references 5, 6, and 7. The estimated 
and measured longitudinal derivatives given fn table I are based on 
reference 6, i n  which the model center of gravity was 73.53 inches  behind 
the nose. The measured derivatives f o r  intermediate  static-margin  values 
were taken  directly from this reference, and the  values gfven for small 
and large  s ta t ic  margins were obtained from the estimated changes of the 
measured derivatives due t o   s h i f t s  in the  airfmne center of gravity. 
The s t a t i c  margin varies wi th  Mach number in each  static-margin  category 
listed i n  table I. The values  given f o r  intermediate  static margin, f o r  
example, vary from 0.333E t o  0.2% as H varies between 1.0 and 2.0. 
This variation i s  due t o   s h i f t a  in the airframe center of pressure w-ifn 
Mach number.  The variations of the standard atmosphere flight condit-ans 
used in   this   analysis   are  given i n  table II. 

* 

- 



. 
Effect of static margin and Mach  number m i a t t o n . -  The transient 

responses (no t o  a unit  step  acceleration  input)  sham  in figures 4, 5, 
and 6 are for  small, intermediate, and large s t a t i c  margins, respec- 
t ively.  On these  figures,  the  value of the rate-servo gain  constant 
(KR) was chosen such that the value of the peak amplitude r a t i o  of the 

transfer function A ( j w )  was equal t o  1.3 and the  value of the 

integrating-servo  gain  constant K1 was chosen  such that the peak ampli- 
tude  ra t io  of. the .closed-loop  frequency  response -( no jcu) was also  equal 
to 1.3. An examination of figures 4, 5, and 6 reveals  that  the response 
time (the time requlred  for  the  output tram ien t   t o  reach and remain 
within a given  percentTf  steady state) ie  decreased by Increasing  either 
s t a t i c  margin or  Mach  number.  The most rapid  responses  obtalned  are 
shown in  f igure 6 whkh is based on sea-level flight of the model with 
large  stat-ic margin. 

6 
6s 

" ..ni 

Effect of rate-of-pitch feedback. - Some of the  responses shown In 
figures 4, 5, and 6 are   for  KR = 0; set t ing KR equal t o  zero  has the  
effect  of removing the  rate-servo  block (see f ig .  1). An example of the 
effect  of rate-of-pitch feedback is  best sham  by  referring to figure 5 . 
where the system transient response f o r  KR = 0 i s  shown along w i t h  
responses  including 6 feedback f o r  each Mach  number. An exeminatiob 
of the  responses shown i n   t h i s  figure Indicates that  including 6 feed- .I 

back i n  this  type of c o n t r a l  system  has the  effect  of  increasing the 
damping of the  missile and allows an increase  in  the  integrating-servo 
gain  constant K1, which results i n  a faster responee. 

As mentioned in the  section -OD OF ANALYSIS, the  transient 
responses were obtained by the use of a Fourier  synthesizer. A com- 
parison between a Fourier  synthesizer result and a transient response 
calculated by the  methods of Laplace (references 3 and 8) is made in 
figure 7 for the  case of sea-level  flight at M = 1.6 and with 
SM = 0.294E. Other  comparisons of the  results  obtained by these two 
methods h8Ve been made and agreement between t h e  two methods is con- 
sidered sufficient t o  jus t i fy  u6e of the  Fourier  synthesizer t o  Obt81n 
t h e  transient responses. 

Effect of altitude variation.- Except for   a l t i tude  and servo-gain 
adJustmnts,  the  responses shown in  f igure  5(c) are for  the same con- 
ditions as those  presented i n  figure 8 where the % transient responses 
%o a unit  s tep  acceleration  input  are based on fl ight at 10,000 feet  
*kid 40,ObO feet. The values of Kl and KR used i n  figure 8 (except 
!'or the  dotted curve of figure 8(a)) were chosen such that  the PC& 
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slower  response  than that  obtained  at  sea  level  while  flight  at 
40,000 f ee t  shows a consfderable  Increase  in  the normal acceleration 
response  time. A comparison of figure  5(c) and figure  8(a)  indicates 
tha t   the  value of these s e m  gain  constants  did not change appreciably 
between sea  level and 10,000 feet .  The dotted  curve of figure 8(a)  i s  
the response at 10,000 f e e t  with  rate-of-pitch  feedback using the same 
servo gain  adjustments t ha t  were used.to  obtain the sea-level  response 
of figure  5(c).  Since these  responses do not differ  greatly,  it is 
believed  that a f a i r  approxfmation of the  behavior of the airframe 
between sea  level and 10,000 f e e t  is obtained by basing  the  analysis 
en t i re ly  on sea-level flight. 

Effect of accelerometer dynamics.- As mentioned previously i n  the 
description of the proposed acceleration  control system, the  acceler- 
ometer dynamics can be represented by the  transfer  f 'mctian 

In figure 1, this   t ransfer   funct ion is  labeled "accelerometer dynamics1' 
in   the  outer  feedback loop. In figure 9, a' CompariBon i s  made of the 
response  obtained by using the proposed acceleration  control system w i t h  
and without the accelemmeter dynamics included  in  the outer feeaback 
loop. The curves sham in figure 9 are based on sea-level flight at 
M = 1.6 and w i t h  SEP = 0.294E, and the remits indfcate  that  8 s l igh t  
increase  in  response time and period of the  t ransient   osci l la t ions is 
obtained with the  inclusfon of accelerometer dynamfcs. On t h i s  basis, 
using  the  simplifying assumption tha t  a. = 1 for   the  major part of 
this  analysis seema t o  be just i f ied.  

vno 

Effect of aerodvnamic out-of-trim moment. - In the automatic  control 
system being  investigated, an aerodynamic out-of-trlm moment can be 
represented by an equivalent  control-surface  deflection, t o  be denoted 
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by t30t. This control-surface deflection can be represented in the  
system block diagram as an additional input a8 follows : 

The t ransfer  function - can be derived by set t ing ni = 0 and 

employing the relations 

no 
6ot 

n, = -E 

and 

Using the general theories of servamechanlam analysis, the t ransfer  
Axnction is: 

%t 

The steady-state fb error is then obtafned by applying the final-value 
theorem (see reference 3, chapter 3) to equation (1) as f o l l o v e :  

. 



from which it is  found tha t  no (steady  state) is  always zero for   the 
control system  under consideratfon. 

60t 

Similarly,  the  transfer  function - can be derived as 80 
6ot 

Then by an ly lng  the  final-value theorem, 80 (steady  state) i s  found t o  
be finite,   the  value of which is a measure of  the  effect  of out-of-trim 
mament . 

60t 

The resul ts  of the out-of-trim  fnvestigation conducted herein are 
presented  in  table III where the  values of 80 (steady  state) are. tabu- 
laked f o r  the automatic s tabi l izat ion system with and without  rate-of- 
pitch feedback. The resul ts  show that the system with  rate feedback 
produces l e s s  8, er ror  due t o  sot for any se t  of comparable con- 
ditions. It i s  also shown tha t   the  magnitude of the e m r  increases 
with increasing Mach  number and decreases  with  increasing  static margin. 
These resalts  indicate that the use of r a t e  feedback and high s t a t i c  
margin w i l l  keep the Bo error due t o  out-of-trim moment at a minirmmr. 
To summarize, the  pr incipal   effect  of 89 aerodynamic out -of - t rh  moment 
is t o  cause a steady-state  error  in  pitch  angle e,, with no steady-state 
error  i n  normal acceleration. 

Bot 

Application of Routh's  discriminant t o  the  stabil i ty  analysis.-  
A n  application of Routh's c r i t e r ion   fo r   t he  case of sea-level flight at 
M = 1.6 with SM = 0.294E is presented i n  figure 10. The characterist ic 
equation of  the  closed-loop transfer  function &s) Kith rate-of-pitch 
feedback is  of f i f t h   d e p e .  The conditions f o r  complete s t a b i l i t y  for  
a system  having  a characteristic  equation of fifth degree are derived in 
reference 9,  and applications of Routh's criterion  including  the neces- 
sary and sufficient  conditions for complete s t ab i l i t y   a r e  given i n  
reference 10. 

I n  conducting the analysis based on Routh's criterion  as  presented 
herein,  the  coefficients of the characterist ic  stabil i ty  equation were 
expressed as functions of Kl and KR. The curve  presented i n  fig- 
ure 10 was then  obtained from the  condition f o r  neutral   osci l la tory 
s t a b i l i t y  

R = (E - AD) (DE - CF) - (BE - m)2 = o 
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Any combination of the values of KR and K1 f a l l i ng  above the neutral  
osci l la tory  s tabi l i ty  boundary in   f igure 10 produces oscil latory  insta- 
b i l i t y .  The lower s t ab i l i t y  limit of the  integrating s e m  gain K1 
was determined from the  coefficient F which i s  a constant  multiplied 
by Kl. Therefore,  since an unstable  root would exist i f  R1 assumed 
a negatfve  value, the lower limit f o r  K1 is  zero. Since the  other 
conditions  for complete s t ab i l i t y  as given i n  reference 10 f a l l  outside 
but indicate-stability  in  the  direction of the  stable  region of f ig -  
ure 10, any set  of values of K1 and KR fall ing  within this  region 
w i l l  produce a stable system. 

Effect of varying  rate-servo  gain  constant (Kx).- A locus of points 
based on six values of KR and for  which KI w a s  adjusted t o  make the 
peak-amplitude ra t io  of the  transfer  function ~ ( J w )  equal t o  1.3 i s  
sham in   f igure 10. Closedrloop  frequency  responses s(jcb) based on 

n i  

. 

values of- K1 and KR which correspond to the  points-Gf this locus and 
based on the s m e  flight  conditions  used i n  figure LO are presented i n  
figure 11. In figure 12, the  transient responses (n, t o  a unit step ni)  
obtained from each  frequency  response are sham. The results given i n  - 
figure 11 indicate  that  the  resonant  frequency peak OCCUTB a t  a  higher 
frequency as KR i s  decreased, and as  the value of KR approaches zero 
a &lp, or  bucket,  appears in the lower frequency  range of t h e  mplitude- L 

r a t io  curves. I n  figure 12, a slight decrease in   the  t ransient  response 
tfme i s  shown as KR decreases; however, for the  case of KR = 0, a 
slowly r is ing  osci l la tory  t ransient  response, resulting  principally 
fromthe low frequency characterist ics of the frequency  response, i s  
obtained a8 sham. by the final plot. The foregoing data indicate  that  
values of KR in the range 0.062 t o  0.049 yLeld satisfactory  responses 
in that they are rapid and well damped, although the exact  adjustment 
of KR does not seem t o  be c r i t i c a l  if 'IC1 is adJusted to   ob ta in  a 
slight overshoot of the n, transient response. 

Effect of varyfq Mach  number with servo gains f bed. - The effect  
of f ixing  the values of the s e m  gain  constants and varying t h e  Mach 
number is sham  for.  intermediate and large e ta t ic  margins i n  figures 13 
and 14, respectively. The curves  presented in  these  figures are based 
on sea-level flight at four different Mach numbers and show the n o m 1  
acceleration responses obtained when K1 and KR are fixed a t   the  
values  sham i n  figure 15 at M = 1.6. 

~~ 

The variations of KR and K1 w i t h  Mach  number s h m  in  f igure 13 
are based on the values of these  gain  consta~ts  used previously in 
obtaining the  responses sham in   f igures  5 and 6 where. the peak ampli- 
tude ra t io  of was set  at 1.3. It is show in figures 13 and 14 n i  
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that ,  when KI i s  adjusted t o  gfve I $(jcu) I = 1.3 at M = 1.6, - mEuz 
values of M less  than 1.6 give more stable '  responses and the n, 
transient response becomes  more osci l la tory as M is  increased above 1.6. 
The osci l la tory response  obtained f o r  M = 2.0 in figure 14 indicates 
tha t   the   e f fec t  of varying Mach number with s e m  gains  fixed is greater 
with  large  static margin. 

The use of an auxiliary  control t o  var~r the  servomotor gains wi th  
Mach  number t o  conforin with  the  values  given in   f igure  15 would reduce 
the  effect  of Mach  number variation.  Since it has already been shown 
that  the  exact adjustment of KR is not c r i t i c a l  if K1 is adjusted to 
obtain a sl ight  overshoot of the  transient response, the design of 
a. gain-varying  device could be simpllffed by basing it only on the  mi- 
ation of K1 with Mach number. 

Transient  responses of So, a, 7 ,  and 8 t o  a uni t  step acceler- 
ation input. - The results  presented  in  figure 16 are based On sea-level 
f l igh t  a t  M = 1.6 f o r  two values' of s t a t i c  margin. Figure 16(a) is 
f o r  SM = 0.294E, whereas figure 16(b) i s  f o r  SM = 0.564E. Normel- 
acceleration transient respanseer t o  a unit step acceleration  input f o r  
the seme conditions as used i n  obtaining the  response8 of figure 16 have 
previously been shown i n  figures 5(c) and 6(c>.  It can be seen in fig- 

approximately 0.23O per g normal accelerat ion  for   e i ther  value of s t a t i c  
margin, and a f t e r  0.3 second the  steady-state  rate of change of pitch 
angle and flight-path angle is approximately 10 per second per g. An 
examination of the  control-surface-deflection (6) reBpomee presented 
in  figure 16 shows that ,  as would be expected,  approximately  twice as 

larger   Stat ic  margin; namely, 0.49 per g for SM = 0.5&- and 
O.255O per g f o r  SM = 0.29&. 

- ure 16 that  the  angle of attack approaches 8 steady-state d u e  of 

L much steady-state 6 is required  per g normal acceleration with the 

A further examination of figures 16(a) and 16(b) shms that more 
rapid missile  responses are obtained with high s t a t i c  margin. T h i s  
result is  obtained because the  increased aemdynamic s t a b i l i t y  of the 
airframe allows a higher  integrating-sem gsin Kl, which produces a 
more rapid change in control-surface  deflection. 

@xwitational influence.- The results of this   analysis  can be 
applied  either t o  pi tch  or  t o  yaw due -to the symmetry of the  airframe 
in these  planes. However, in pitch, because of the  I g acceleration 
due to gravity,  there exists a grgvitational influence on the  acceler- 

throughout this  analysis.  Its omission is not bel ievedto   a f fec t   the  
transient responses  seriously  since the  to ta l   var ia t ion  of 8, during 

I mete r  which varies  as cos Bo. This influence ha6 been neglected 

., the  transient response t h e  is small, aa can be seen i n  figure 16. The 



effect of this  gravitational  influence on the  trim condition is not 
serious because in  practice  the trim condition will be continuouely dic- I 

t a t ed  by a homing seeker o r  other guidance system. 

Syatem responses  obtained  with acceleromceter placed ahead of center 
of gravity t o  generate  rate-of-pitch  feedback signal.- In practice, it 
may be desirable t o  include only one B e r n  in   the  system and add the  
normal-acceleration and rate-of-pitch  signals  electrically o r  by sane 
other method. Mr. H. D. Garner of the Instrument Research Mvision at 
the Langlzy Laboratory has suggested that  the  rate-of-pitch feedback 
may be obtained by mounting the normal accelerometer ahead of the  center 
of gravlty of the airfrane so that   the   amelexmeter  w i l l  be sensit ive 
t o  angular  acceleration iY as well as normal acceleration  Since 
the accelerometer  signal i s  fed through the  integrating aervo, the  com- 
ponent due t o  angular acceleration is  effectively an angular-rate feed- 
back o r  rate-of=pitch feedback. 

The rate-of-pitch feedback  gain is  then determined by the  distance 
fromthe  center of gravity of t he  a i r f r m e   t o   t h e  normal a c c e l e m t e r .  
With s t a t i c  margin  of 0.29G and M = 1.6, t o  obtain  the response of 
figure  5(c) (with K1 = 0.11 and KR = 0.062), the normal accelermeter I 

m u s t  be nmunted 18.1 fee t  ahead of the  airframe center of gravity. With 
s t a t i c  margin of 0. mi5 and M = 1.6, t o  obtain the responae of - f ig-  
w e  6(c) (with K1 = 0.21 and KR = 0.047), the  normal accelerometer 
must; be m t e d  7.2 fee t  ahead of the airframe center of gravity. The 
size of the  airframe used i n  this investigation  limits  the  distance 
between airprwne center of gravity and accelerometer t o  a maxf- 
mum of about 5 feet. 

A theoretical  investigation of the system response  with the normal 
accelerometer mounted 5 feet ahead of the airframe center of gravity 
with s t a t i c  =gin of 0.564': and KI = 0.09 (effective KR = 0,014) was 
made f o r  Mach mmibers of 1.0, 1.2, 1.6, and 2.0. The results are sham 
In figure 17. It can be seen fram figure 17 tha t  this location of t he  
accelercmeter does not provide enough effective  pitch-rate feedback t o  
damp the  system sat isfactor i ly .  

To produce sufficient demping by t h i s  method, it would be necessary 
t o  extend  the nose of the m d ~ l  2 feet o r  mre. An alternative is t o  
use two normal accelermneters, one  mounted a distance 2 -ahead of the 
airfr&ne center of gravlty and one m n t e d  on the airframe center of 
gravity, The signals from these  accelerometers  subtracted  before 
being fed  to   the  integrat ing servo. The pitch-rate feedback  gain and 
the  acceleration feedback gain can then each be aUus%ed  independently 
for  any diatance 2 by adjusting  independently  the two accelermeter 
gains and the  integrating s e m  gsin. It is believed  that no d i f f icu l ty  
will be encountered due t o  s l ight  mismatching of the  dynamics of the * 
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two accelerometers  since  the  accelerometer  natural  frequencies will be 

the high  frequency components of the accele-ter signals will be 
attenuated by the i n t e g g ~ ~ t i n g  servo. 

i considerably  higher  than  the  resonant  frequency of the  system and since 

Comparison of acceleration  control system w i t h  an attitude control 
gssteqg.- A reasonable way t o  canpare two control systems to be used f o r  
missile guidance i s  t o   c m a r e  their  effectiveness  in  obtaining rapid 
changes in flight-path  direction  xfthout producing exceesfve normal 
accelerations of the  airframe. This cnmparison has been made between 
the acceleration  control system  analyzed  herein and the   a t t i tude  control  
system analyzed i n  reference 1; the results are sham i n  figure 18. The 
resul ts  f o r  the acceleration  control system and for  the  att i tude  control 
system were compared at a Mach number of 1.6 ma 1.8, respectively, 
because these resultB w e r e  available. The s t s t i c  margins used w e r e  con- 
aidered t o  produce the most sa t i s fac tory   resu l ta   for  each of the two 
systems, t ha t  is, intermediate  static margin f o r  the acceleration  control 
and small   s ta t ic  margin fo r   t he   a t t i t u*  corrtrol. ZI figure 18, the com- 
mand input B i  t o  the attitude control s , y ~ t e m  is a one-degree  step. 
As i s  shown, t h i s  produces a peak normal acceleration of 4. Ig and results 

s ient  has died out t o  within 5 percent of i ts  final value in approximately 
0.86 seconds. The  command input t o  the acceleration  control system is a 

duce a peak normal acceleration of 4. l g  and the time duration was chosen 
t o  produce a steady-etate change in flight-path angle y of lo. As 
sham i n  figure 18, the  y t r m a i e n t  hss died out t o  within 5 percent 
of i t s  f i n a l  value in approxlmately 0.45 second o r  approximately one- 
half the time required by the  a t t i tude  control  system. This regult 
indicates  that  changes In flight-path  direction may be obtsined more 
rasidly with the  acceleration control system. 

I i n  a steady-state change in  f l ight-path angle 7 of lo. The 7 tran- 

- square pulse. The magnitude of the square pulse was chosen 80 as t o  pro- 

The areas under each of the no~-acceleretion-re~pon~e curn8 
sham in  figure 18 are approxfmately  equal.  Sfnce the  normal acceler- 
ation is  proportion81 t o  angle of attack, there is I~L) apparent  increase 
i n  velocity loss due t o  drag in  obtaining the shorter y response time 
with the  acceleratfon  control system. The cmp&son made here is  based 
on the  gvailable  data for the at t i tude  control  system. It is believed 
that more cases and other variables would have t o  be considered  before 
a general  conclusion as t o  the re la t ive  merit of either system  can be 
made. 
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The acceleration  control system is  primarily  sensitive t o  normal 
accelerations of the airframe and actuates  the  control  surfaces  through 
the use of an integrating serv-omotor t o  obtain desired normal acceler- 
ations. A n  automatic control system w i t h  primary sens i t i v i ty   t o   l i nea r  
acceleration  appears t o  be a satisfactory method for  obtaining longi- 
tudinal  control of the supersonic airfrm under consideration. The 
acceleration  control system, however, has no directional space reference 
of i t s  own; therefore it is believed tha t   the  primary  usefulness of such 
a system i s  in conjunction w i t h  a homing seeker or  w i t h  8 guidance syetem 
which w i l l  provlde a directional  space  reference. The conclusions  reached 
as a result of the analyses  presented  herein,  based on a specific super- 
sonic airframe configuration, axe as follows: 

1. On the basis of  a comparfson of the normal-acceleration  tran- 
sient  responses  presented  herein  for  variaus Mach nw~iberfi, e t a t i c  margins, 
and alt i tudes,  it can be concluded that: 

(a)  Increasing  the  airframe  static margin  produces more rapid n 

transient responses, which may necessitate  the  use of a fast-acting 
ser”om~tor. 

(b) Ineluding rate-of-pitch  feedback i n   t h e  automatic control 
system has the effect  of increasing  the damping of the mfssile and 
allows an increase in the  integrating-servo gain constant  resulting 
in a more rapid response. The. exact  adjustment of the rate-of-pitch 
feedback control  gain  constant does not seem t o  be c r i t i c a l  if  the 
integrating-servo  gain is  adjusted t o  obtain a slight overshoot of 
the normal-acceleration  transient response. 

( c )  Wre rapid  transient responses c m  be obtained  with  higher 
Mach number. 

(d) Flight at a l t i tude produces slower responses  than  those 
obtained at sea level; however, a fair approxlmation of the behavior 
of  the  system between sea level and 10,000 feet is obtained  by - 
basing the analysis  entirely on sea-level flight. 

2. When the integrating-servomotor  gain  constant i s  adjusted so 
that the peak amplitude r a t io  .of the system-closed-loop t ransfer  func- 
t ion i s  1.3 a t  a Mach nmiber of 1.6, flight at lower Mach numbers yielde 
more stable  transient responses and the system transieKt  response 
becomes more osci l la tory as the Mach  number is increased above 1.6. The L 

effect of varying Mach number with fixed se~?vomotor gain  constants is 
greater with large s t a t i c  margin. 

.8 



. NACA RM L5lD23 - 21 

3. The principal  effect  of an aerodynamic aut-of-trim moment i s  to 
cause  a steady-state  error  in  pitch angle  with no steady-state  error  in 
noma1  acceleration. The use of a rate-of-pitch  feedback  control and 
high s t a t i c  margin tends to minimize the steady-state error   in   pi tch 
angle. due to an aerodynamic out-of-trfm moment of the  airframe. 

4. A comparison between the  acceleration  control system and an 
att i tude  control system indicates tha t  changes i n  flight-path  direction 
may be obtained more rapidly w i t h  the 'acceleration  control system with 
no apparent  increase in   veloci ty  loss due t o  drag. 

5. Theoretically,  effective  rate-of-pitch feedback may be obtained 
in  a  system employing an integrating servomotor by using a normal 
accelerometer mounted ahead of the model center of gravity;  thus  the 
necessity of a r a t e  gyro i n  the control system may be elimfnated. 

Langley Aeronautical  Laboratory 
National Advisory C " b t e e  for Aeronautics 

Langley Field, Va. 
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Ell derivatives i n  radian measure; Iy = 31.3. slug-ft2; 
m = 5.05 slugs; E = 1. n 6  ft; S = 4.1 B q  fE] 

Mach 
number 

Estimated derivatives f o r  small s t a t i c  margin 
( s t a t i c  margin = 2 inches at M = 1.6) 

1.0 
1.2 
1.6 
2.0 

0.126' 
.134 
,094 
.Ob2 

Messured derivatives for intermediate  static margin 
( s t a t i c  mmgin = 6.27 inches a t  M = 1.6) 

1.0 -0.774 0.797 -1.07 -6.97 0.333 , 
0 

2.46 O -. 717 -573 -.613 -6; 39 .249 2.0 
2.61 o -.&x .702 -.763 -7.22 .294 1.6 
3.02 0 -.831 .820 -1.025 -7.48 339 1.2 
3.22 

EstFmated derivatives for l a rge   s ta t ic  margin 
(static.  -margin = 12 inches at M = 1.6) 

I 
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TABLE I1 

VARIATION OF FLIGHT CONDITIOmS 

Altitude v 9 Mach 
(ft) (ft/sec) ( W S ¶  ft) number 

Sea level 

2245 5980 2.0 Sea level 

1785 3791 1.6 Sea level 

1339 2132 1.2 Sea level 

1116 1481 1.0 

10,000 

1553 702 1.6 40,000 

1721 2692 1.6 
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Mach Altitude SM 
Number 60t ( fw (fraction of E )  '0 (steady  state) 

Without rate-of-pitch feedback 

1.0 
1.2 
1.6 
2.0 

1.0 
1.2 
1.6 
2.0 

1.6 
1.6 
1.6 

1.6 
2.0 

1.0 
1.2 
1.6 
2.0 

1.0 
1.2 
1.6 
2.0 

1.6 
1.6 

0.126 

0% 
.134 

.042 

333 
339 
.294 
.249 

.58c 

.294 

.294 

"-&"" 
10,000 
40,000 

1.62 
1.45 
2.96 
5-86 

0.8 
.8 
- 9  
-96 
53 
93 - 69 

With rate-of-pitch feedback 
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Figure 1.- Block diagram of the proposed  acceleration  control eyatem. 
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Figure 2.- Schematic  diagram of proposed rate ~ervo and integrating servo - illustrating a possible mechanical arrangement. 
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(b) Plan-view sketch of model configuration. 

Figure 3.- Concluded. 
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Figure 4.- Normal acceleration (no) responses to a unit  step  acceleration 
input  (ni) f o r  various  Mach nunibera based on sea-level  flight of the 
model with amall static  margin. K1 is. the  integrating-.servo gain 
constant and KR is the rate-eervo gain constant. 
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Figure 5.- Normal acceleration (no) responses to a unit step acceleration 
input  (ni) for various &ch numbers  based on sea-level  flight of the 
model with intermediate  static margin. K1 is the integrating-servo 
gain constant  and E& is  the rate-servo gafn conatant. 
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Figure 6.- Normal acceleration (no) responses t o  a unit etep acceleration 
input f n i )  for various Mach nubere based on sea-level;  flight of the 
model with large  static  margin. Kl is  the  integrating-eervo gain 
conetant and is the rate-eervo  gain  constant. 

. 
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Figure 8.- The effect- of flight at-altitude on the normal acceleratior 
( n o )  responses to a unit  step  acceleration input (ni). Responses 
are based on flight  at M = 1.6 and SM = 0.294E. 
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Figure 9.- Comparison of the  closed-loop  transient  responses fo r  the 
system wfth and without the dynamics of an accelerometer included 
in the  outer feedback loop. Both curves are based on sea-level 
f l i g h t   a t  M = 1.6 and SM = 0.294E. (IQ = 0.062) 
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Figure 10.- Application of Routh'e discriminant ta the characterist ic 
equation  of  the  cloeed-loop  transfer  function w i t h  the coefficients 
expreseed  a8 a function of K1 and Q and based on sea-level 
f l igh t  at M = 1.6 and SM I 0.294'c. 
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Figure 11.- Closed-loop frequency response8 [$(MI] f o r  various  values 

of KR and w i t h  values of K1 such that the peak amplitude r a t i o  

of I$( @)I = 1.3. All reaponsea are based on sea-level  f l ight a t  

M = 1.6 and SM = O.29h-E. 
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Figure 12.- Normal acceleration (no) reeponses to R unit step acceleration 
input (nil for various  valuea of KR and with values of ~1 such that 

the peak amplitude  ratio of l$(ju)l = 1.3. A l l  reaponees are based on 

sea-level flight a t  M = 1.6 and SM = 0.294E. 
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Figure 13.- Normal acceleration (no} responses to a unit step acceleration 
input (nt) as obtained for f i x e d  values of fntegrating- and rate-servo 

sea-level  flight of the  model  with intermediate  static margin. ICI = 0.1- 
and Q = 0.062. 

- gain constants with Mach lullpb:r as a variable. Responses  are based on 
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Figure 14.- Normal acceleration (no) responses to a  unit  step acceleration 
input (ni) as obtained  for  fixed  values of integrating- and rate-servo 
gain constants with Mach number as a variable. Responses are based on 
sea-level  flight of the model with large static margin. K1 = 0.21 
and = 0.047. 
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Figure 15.- Variation  of K1 and KR with Mach  number when values 
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(a) SM = 0.294E; KI = 0.11; % = 0.062. 

Figure 16.- Transient  responses of eo, a, 7 ,  and 6 to a unit atep 
acceleration input m e d  on sea-level flight at M = 1.6. 
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(b) SM = 0.56E; K1 = 0.21; K& = 0.047. 

Figure 16.- Concluded. 
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(a) Closed-loop  frequency responses %( @). 
ni 

Figure 17.- System frequency and t r amien t  responaes  obtained f o r  varioue 
Mach numbers with an  accelerometer  placed five feet  ahead of the model 
center of gravity t o  generate  both  normal-acceleration error and rate- 
of-pitch feedback signal. K1 = 0.09; effective IQ = 0.014. 
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(b) Normal-acceleration (no) transient responses t o  a unit step acceleration 
input (ni)  . 

Figure 17. - Concluded, 
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Figure 18.- Comparieon of 7 response time8 for acceleration  control syetem 
and attitude  control  system with equal  maximum normal acceleratione. 


